付新苗 研究员

发布时间: 2017-09-14      访问次数: 83

Principal Investigator:

Xinmiao Fu (付新苗), Ph.D.

Professor of Biochemistry and Molecular Biology

College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou City, Fujian Province 350117, China

Emailxmfu(at)fjnu.edu.cn

中文简介

Curriculum Vitae

Research Interests

1.The mechanism of antibacterial resistance

    Antimicrobial resistance is a severe threat to public health as a consequence of the acquired resistance of microorganisms against natural or synthetic antimicrobials. It is of clinical significance to understand the resistance mechanisms, which with respect to bacteria may include: inactivation of the antibiotic, modification and/or over-production of the target enzyme, the bypass of the inhibited steps, the poor permeability of the cell envelop and the efflux of the antibiotic, as illustrated in the  figure below (adopted from Coates, Hu et al., Nat Rev Drug Discov, 2002, 1:895).


    We focus on the mechanism of bacterial persistence that contributes to the antibacterial resistance substantially. Bacterial persisters are non-growing and/or non-replicating cells with extremely low levels of metabolism (i.e., in a dormant state), and are thus tolerant to almost all types of antibiotics presumably due to the poor permeability of their cell envelops and/or the little activity of the target enzymes. How the normally growing bacterial cells become persisters and how the persisters maintain or return back to the normal state are largely unknown. We apply genome-wide screening to identify the genes involved in the bacterial persistence. We also explore new methods to reduce or even eliminate the antibiotic tolerance of the persisters, allowing the currently used drugs to more efficiently kill both normal cells and persisters. This will greatly extend the life of current antibiotics and also reduce the emergence of antibiotic-resistant bacteria.







2.The mechanism for the biogenesis of bacterial outer membrane proteins and the potential for antibiotic design

    Development of new antibiotics targeting other essential biological processes than DNA replication, gene transcription, protein translation and cell wall synthesis is a promising strategy against antibiotic-resistant pathogens. We aim to develop new antibiotics targeting the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. The β-barrel OMPs are widely present in the outer membrane of Gram-negative bacteria and primarily comprise β-sheets, adopting a unique cylindrical, barrel-like topology. They are critical for the outer membrane stability and function in a variety of biological processeses (e.g., cell adhesion, envelope organization, nutrient transport, virulence-related protein secretion, and signal transduction). In addition, the biogenesis of β-barrel OMPs in bacteria is a complicated process involving multiple quality control factors and channels that may comprise a supercomplex spanning the inner and outer membranes, as illustrated in the figure below (Wang et al., JBC, 2016, 291:16720) 

    

    The apparent advantage of antibiotics targeting the β-barrel OMPs and/or their biogenesis pathway is that the drugs are convenient to access to their targets, largely due to the free diffusion of small molecules (<600Da) across the bacterial outer membrane with porins. Accordingly, the low influx and high efflux of antibiotics that largely account for the antibiotic-tolerance of persisters would be avoided. This type of antibiotics, if successfully designed and developed, are of significance against antibiotic-resistant bacteria. 



3. Biological functions of small heat shock proteins and the potential for lifespan extension

    Small heat shock proteins (sHSPs) are widely found in a variety of organisms, and together with such heat shock protein families as Hsp60, Hsp70, Hsp90 and Hsp100 comprise the classic molecular chaperone protein system to monitor the general quality of other proteins in cells. In particular, the sHSPs from nematodes and flies were reported to be involved in longevity. We have systematically studied the biological function and mechanism of bacterial sHSPs in the past and now aim to study the biological function and mechanism of sHSPs from C. elegans, in particular dissecting the molecular mechanism underlying their lifespan-extension action in worms. On the basis of these, we aim to develop new methods for lifespan extension in C. elegans through regulating the sHSPs-related protein interaction network.


Selected publications


1. Yan Wang, Rui Wang, Feng Jin, Yang Liu, Jiayu Yu, Xinmiao Fu * and Zengyi Chang *. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-barrel Outer Membrane Proteins in Bacteria. J. Biol. Chem., 2016, 291(32): 16720–16729..

2. Liu J, Fu X*, Chang Z*. Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters. Scientific Reports,2015, 5: 14247.

3. Zou Z, Fu X*. Abiotic regulation: a common way for proteins to modulate their functions. Curr Protein Pept Sci. 2015, 16(3):188-95. (editor-invited review)

4. Fu X*.Chaperone function and mechanism of small heat shock proteins. Acta Biochimica et Biophysica Sinica, 2014, 46(5):347-56 (editor-invited review)

5. Ezemaduka A, Yu J, Shi X, Zhang K, Yin C, Fu X*, Chang Z*. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50ºC conceivably by maintaining cell envelope integrity. J. Bacteriol., (2014) 196:2004-2011

6. Ge X, Lyu ZX, Liu Y, Wang R, Zhao XS,Fu X*, Chang Z*. Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions.J. Bacteriol., 2014, 196: 672-680

7. Ge X, Wang R, Ma J, Liu Y, Ezemaduka A, Chen P,Fu X* and Chang Z*.DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in Gram-negative bacterium Escherichia coli. FEBS J., 2014 , 281: 1226-1240

8. Fu X*, Shi X, Yan L, Zhang H,Chang Z*.In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-crosslinker.J. Biol. Chem., 2013, 288(44):31646-54.

9. Fu X*, Shi X, Yin L, Liu J, Joo K, Lee J, Chang Z*.Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues.J. Biol. Chem., 2013, 288(17):11897-906.

10. Fu X, Wang P, Fukui M, Long C, Yin L, Choi HJ, Zhu BT. PDIp Is a Major Intracellular Estrogen-Storage Protein That Modulates the Tissue Levels of Estrogen in the Pancreas.Biochem. J., 2012, 447(1):115-23.

11. Fu X, Wang P, Zhu BT.Characterization of the Estradiol-Binding Site Structure of Human Protein Disulfide Isomerase (PDI).PLoS ONE, 2011, 6(11):e27185.

12. Fu X, Wang P, Zhu BT. Characterization of the Estradiol-Binding Site Structure of Human Pancreas-Specific Protein Disulfide Isomerase: Indispensable Role of the Hydrogen Bond between His278 and the Estradiol 3-Hydroxyl Group.Biochemistry, 2011, 50:106-115

13. Fu X, and Zhu BT.Human Pancreas-Specific Protein Disulfide Isomerase (PDIp) Can Function as a Chaperone Independently of Its Enzymatic Activity by Forming Stable Complexes with Denatured Substrate Proteins.Biochem. J., 2010, 429:157-69

14. Fu X, Zhang H, Zhang X, Cao Y, Jiao W, Liu C, Song Y, Abulimiti A and Chang Z.A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins.J. Biol. Chem., 2005, 280:6337-6348

15. Fu X, Jiao W and Chang Z.Phylogenetic and biochemical studies reveal a potential evolutionary origin of animal small heat shock proteins from bacterial class A. J Mol Evol., 2006, 62:257-266

16. Fu Xand Chang Z.Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis.Biochem. Biophy. Res. Commun., 2004, 316:291-299

17.Abulimiti A+,Fu X+, Gu L, Feng X and Chang Z.Mycobacterium tuberculosis Hsp16.3 Nonamers are Assembled and Re-assembled via Trimer and Hexamer Intermediates.J. Mol. Biol., 2003, 326:1013-1023, +contributed equally


Other publications

1.Liu JF, Fu X*, and Chang Z*. A reciprocating motion-driven rotation mechanism for the ATP synthase, Science China Life Sciences, 2016, doi: 10.1007/s11427-015-4955-0.

2.Zhang K, Ezemaduka AN, Wang Z, Hu H, Shi X, Liu C, Lu X, Fu X, Chang Z, Yin CC. A novel mechanism for small heat shock proteins to function as molecular chaperones. Scientific Reports, 2015, 5: 8811

3.Fu X, Tang Y, Dickinson BC, Chang CJ, Chang Z. An oxidative fluctuation hypothesis of aging generated by imaging H2O2 levels in live Caenorhabditis elegans with altered lifespans. Biochem Biophys Res Commun., 2015, 458(4):896-900.

4.Fu X*, Chang Z, Shi X, Bu D, Wang C. Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Sci., 2014 , 23: 229-237

5.Shi X, Yan L, Zhang H, Sun K, Chang Z, Fu X*. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding. Biochem Biophys Res Commun, 2014, 452(3):402-7

6.Hong W, Wu YE,Fu X,Chang Z. Chaperone-dependent mechanisms for acid resistance in enteric bacteria.Trends in Microbiology, 2012, Jul;20(7):328-35.

7.Zhang M, Lin S, Song X, Liu J, Fu Y, Ge X,Fu X,Chang Z, Chen PR.genetically incorporated crosslinker reveals chaperone cooperation in acid resistance.Nature Chemical Biology, 2011, 7: 671-677

8.Fu Xand Zhu BT. Both PDI and PDIp can attack the native disulfide bonds in thermally-unfolded RNase and form stable disulfide-linked complexes.BBA-PROTEINS PROTEOM, 2011, 1814(4):487-95

9.Shi X, Wang Z, Yan L, Ezemaduka AN, Fan G, Wang R, Fu X, Yin CC, and Chang Z. Small heat shock protein AgsA forms dynamic fibrils. FEBS Letters, 2011, 585(21):3396-3402.

10.Fu Xand Zhu BT.Human pancreas-specific protein disulfide isomerase homolog (PDIp) is an intracellular estrogen-binding protein that modulates estrogen levels and actions in target cells.J Steroid Biochem Mol Biol., 2009, 115:20-29

11.Fu X, Dai X, Ding J, Zhu BT.Pancreas-specific protein disulfide isomerase has a cell type-specific expression in various mouse tissues and is absent in human pancreatic adenocarcinoma cells: implications for its functions.J Mol Histol., 2009, 40:189-99

12.Fu Xand Zhu BT.Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond.Arch Biochem Biophys, 2009, 485:1-9

13.Fu X, Wang P, Zhu BT.Protein disulfide isomerase is a multifunctional regulator of estrogenic status in target cells.J Steroid Biochem Mol Biol., 2008, 112:127-37

14.Jiang XR, Wang P,Fu Xand Zhu BT.Chemical synthesis and biochemical characterization of biotinylated derivatives of 17β-estradiol with a long side-chain covalently attached to its C-7α position. Steroids, 2008, 73:1252-61

15.Zhu J,Fu X, Koo YD, Zhu, JK, Jenney FEJr, Adams MW, Zhu Y, Shi H, Yun, DJ, Hasegawa PM and Bressan RA. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response.Mol. Cell. Biol., 2007, 27:5214-5224.

16.Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M,Fu X, Huang A and Zhu JK.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis.Proc. Natl. Acad. Sci. USA, 2006, 103:18816-18821

17.Fu Xand Chang Z.Identification of a Highly Conserved Pro-Gly Doublet in Non-animal Small Heat Shock Proteins and Characterization of Its Structural and Functional Roles in Mycobacterium tuberculosis Hsp16.3.Biochemistry (Moscow), 2006, 71 Suppl 1:S83-90

18.Feng Y, Jiao W,Fu X and Chang Z.Stepwise disassembly and apparent nonstepwise reassembly for the oligomeric RbsD protein.Protein Sci., 2006, 15:1441-1448

19.Fu Xand Chang Z.Identification of bis-ANS binding sites in Mycobacterium tuberculosis small heat shock protein Hsp16.3: Evidences for a two-step substrate-binding mechanism.Biochem. Biophys. Res. Commun, 2006, 349:167-171

20.Zhang H,Fu Xand Chang Z.The association of small heat shock protein Hsp16.3 with the plasma membrane of Mycobacterium tuberculosis: dissociation of oligomers is a prerequisite.Biochem. Biophy. Res. Commun, 2005, 330:1055-1061

21.Hong W, Jiao W, Hu J, Zhang J, Liu C,Fu X, Shen D, Xia B and Chang Z.Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation.J. Biol. Chem., 2005, 280:27029-27034.

22.Zhang X,Fu X, Zhang H and Chang Z.chaperone-like activity of beta-casein.Int. J. Biochem. Cell. Biol., 2005, 37:1232-1240.

23.Fu X, Zhang X and Chang Z.4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS), a novel molecule having chaperone-like activity.Biochem. Biophys. Res. Commun., 2005, 329:1087-1093.

24.Fu X, Jiao W, Abulimiti A and Chang Z.Inter-subunit cross-linking suppressed the dynamic oligomeric dissociation of Mycobacterium tuberculosis Hsp16.3 and reduced its chaperone activity.Biochemistry (Moscow), 2004, 69,552-557

25.Chen X,Fu X, Ma Y and Chang Z.Chaperone-like activity of Mycobacterium tuberculosis Hsp16.3 does not its intact (native) structuresstructures.Biochemistry (Moscow), 2004, 70(8):913-9

26.Liu Y,Fu X, Shen J, Zhang H, Hong W and Chang Z.Periplasmic proteins of Escherichia coli are highly resistant to aggregation: revaluation for roles of molecular chaperones in periplasm.Biochem. Biophy. Res. Commun., 2004, 316:795-801.

27.Fu X, Li W, Mao Q and Chang Z.Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones.Biochem. Biophys. Res. Commun, 2003, 308: 627-635

28.Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X and Chang Z.Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation.Biochem. Biophys. Res. Commun., 2003, 310: 412-420

29.Feng X, Huang S,Fu X, Abulimiti A and Chang Z.The reassembling process of the nonameric Mycobacterium tuberculosis small heat-shock protein Hsp16.3 occurs via a stepwise mechanism.Biochem. J., 2002, 363:329-334 


Book Chapters

Fu X. Insights into how small heat shock proteins bind a great diversity of substrate proteins: a super-transformer model. In The Big Book on Small Heat Shock Protein World (ed. R.M. Tanguay and L.E. Hightower). Springer, 2015, p101-117.



付新苗,研究员,博士生导师, Emailxmfu(at)fjnu.edu.cn, fuxinmiao(at)pku.edu.cn,福建师范大学旗山校区理工10号楼209/105


个人简介:1977年生,湖南岳阳人。2000年本科毕业于清华大学环境科学与工程系;同年推荐进入清华大学生物科学与技术系,攻读博士学位,研究小分子热休克蛋白调节分子伴侣活性的机制。从2005年到2010年,先后在美国加州大学河滨分校(University of California Riverside)朱健康实验室和堪萨斯大学医学中心(University of Kansas Medical Center)朱宝亭实验室从事植物抗氧化和二硫键异构酶方面的研究。从201010月起,在北京大学生命科学学院工作,研究与膜蛋白生成质量控制相关的分子伴侣蛋白的作用机制,并拓展到细菌耐药领域。201610月正式加入福建师范大学生命科学学院,继续从事细菌耐药和膜蛋白生成质量控制方面的研究。

  

至今总计发表SCI 论文46篇,被引用次数超过1000次,单篇最高引用131次,H index17,参与编写由Springer出版的专著,担任多家期刊(如《Bioinformatics》、《Genes》、《Science China Life Science》)的审稿人。获福建师范大学宝琛计划高端人才和福建省高校新世纪优秀人才支持计划等荣誉;先后主持国家自然科学基金委青年项目和3项面上项目,参与1项国家重大科学研究计划项目。实验室目前有讲师1人,硕士研究生9人,技术员1人。热忱欢迎有兴趣的学生报考硕士、博士研究生。

  

所获科研基金和人才项目支助

1.2017年福建省高校新世纪优秀人才支持计划

2.2017年福建师范大学宝琛计划高端人才

3.2016年福建师范大学高层次人才建设经费

4.国家自然科学基金委(面上项目):线虫小分子热休克蛋白Hsp17/Hsp12s的生物学功能及其延长寿命的作用机制,317708302018.1-2021.12,在研,主持

5.国家自然科学基金委(面上项目):大肠杆菌ATP合酶的旋转催化和活性调控机制,315707782016.1-2019.12,在研,主持

6.国家自然科学基金委(面上项目):大肠杆菌分子伴侣蛋白HdeADegP协同抵抗酸胁迫的分子机制,312708042013.1-2016.12,结题,主持

7.教育部留学回国人员科研启动基金:折叠酶DsbADsbCPDI在活细胞内和天然底物蛋白相互作用的分子机制,2013.1-2014.12,结题,主持

8.国家自然科学基金委(青年基金项目):折叠酶DsbADsbCPDI在活细胞内和天然底物蛋白相互作用的分子机制,311005592012.1-2014.12,结题,主持

9.国家重大科学研究计划(973计划):膜蛋白的生成、修饰、组装及质量控制,2012CB9173002012.1-2016.12,结题,学术骨干


研究兴趣

1.细菌耐药的分子机制及其应用

细菌耐药正成为严重的临床医学问题,威胁动物和人类的健康,研究细菌耐药的机制、寻找有效杀菌的新方法具有重要的医学价值。本实验室从细菌休眠的角度研究细菌耐药的机理。休眠广泛的存在于细菌、植物、动物,例如熊和蛙的冬眠,结核杆菌在人体内的长期潜伏等。处于休眠状态的生物,代谢水平低,细胞停止生长分裂,抗逆能力增强,因此休眠是生物适应不利环境的重要策略。

  

处于休眠状态的细菌,抗逆能力显著增强,特别是对所有抗生素几乎都不响应,即抗生素耐受(antibiotic tolerance),这是目前诸多抗药细菌产生的根本原因。揭示细菌休眠的机理,包括怎样进入休眠、如何保持休眠、如何从休眠中苏醒等问题,既有基本的生物学意义,也具有重要的医学价值。本实验室以大肠杆菌为模型研究细菌休眠耐药的分子机理;在此基础上,利用适当的动物模型(大鼠、小鼠),以绿脓杆菌、金黄色葡萄球菌为对象,研究开发具有临床应用价值的杀菌新方法。这是我们的主要研究方向。

  

2.细菌膜蛋白生成的机制及其在抗菌药物开发中的应用

任何生物在其生命过程中都不可避免地要面临各种各样的胁迫(stress conditions,如极端的温度和酸碱度、干旱等等)。环境胁迫会诱导细胞内产生一大类具有保护功能的热休克蛋白(heat shock proteins,也被称为分子伴侣蛋白胁迫蛋白)。分子伴侣蛋白对细胞内的其它蛋白质进行广义的质量控制”(quality control),在蛋白质的生、老、病、死过程中发挥重要作用。研究分子伴侣蛋白的生物学功能及蛋白质质量控制的机制既有基本的生物学意义,也具有一定的应用价值,例如作为药物设计的靶标。

  

本实验室关注和细菌膜蛋白生成有关的质量控制因子,例如参与外膜蛋白生成的因子SurASkpFkpADegPSecYEGBamA等。主要借助活细胞非天然氨基酸光交联、化学交联等技术手段,研究这些蛋白因子的生物学功能和作用机制,在此基础上,发展新的抗菌药物。由于这些靶标蛋白都位于细胞外套(外膜、膜间质、内膜外侧等),因此药物极易和靶标结合,不存在摄取效率低和药物外排的问题。和目前广泛使用的抗生素(其靶标通常是细胞质蛋白)相比,这类新型抗生素具有一定优势,发展潜力巨大。

  

3.小分子热休克蛋白的生物学功能和作用机制

小分子热休克蛋白(small heat shock proteinsHSPs)是一类重要的分子伴侣蛋白,几乎在所有生物中都有表达,参与生物抗逆、细胞凋亡分化、机体衰老等过程,和多种疾病(如白内障、肌肉运动障碍、神经退行性疾病等)紧密相关。sHSPs一级序列的主要特征是含有一个相对保守的α-crystallin结构域(80-100氨基酸)。在体外,sHSPs形成含12-24个亚基的寡聚体,发挥不依赖于ATP的分子伴侣活性,但能和ATP依赖的分子伴侣蛋白(如Hsp60Hsp70家族)协同作用,帮助变性底物蛋白再折叠。本实验主要利用非天然氨基酸光交联和化学交联技术,在活细胞中探测sHSPs的结构变化,以及sHSPs和天然底物蛋白之间、sHSPs和其他质量控制因子之间的动态相互作用,从而揭示其作用机制。